HYBRID EVENT: You can participate in person at Rome, Italy or Virtually from your home or work.
Speaker at Oil and Gas Conferences - Delia Teresa Sponza
Dokuz Eyl├╝l University, Turkey
Title : Nanocatalysts used for biofuel production


The demand for renewable and alternative types of energy has taken a new dimension; the primary reason is traceable to the climate change effects that fossil-based fuels have in the earth atmosphere. Bioenergy is one of the many arrays of renewable forms of energy that have taken centre stage in replacing the conventional fossil-based energy sources. Biofuel is the liquid or gaseous fuel derived from biological processes such as agriculture (biomass) or anaerobic digestion (solid or liquid wastes) or a combination of both, rather than geological processes that are known with the traditional fossil-based counterparts. Biomass energy is readily available and environmentally friendly, because it does not lead to a net increase in carbon dioxide levels and produces low amounts of sulphur. An effective implementation of biomass in the current energy scheme would involve the development of new technologies for the large-scale production of biofuel. The two primary methods for converting biomass to biofuels are thermochemical and biochemical processes. Thermochemical biofuels are getting much more attention lately as these biofuels offer several technical and strategic advantages, such as highly developed industrial infrastructure and the biofuels can be produced from virtually all sorts of available biomass in a reasonable timeframe without significant modification in the overall process. At lower reaction temperatures, thermal processing of biomass with catalytic methods offers the possibility of selectively yielding a narrow range of products and reducing the energy requirements of the transformations. In terms of catalysts used, for biodiesel production, heterogeneous catalysts in comparison to homogeneous catalysts provide more effective separation steps for products and catalysts, eliminate quenching process, and offer conditions for the continuous production process. The objective of this review is to discuss the trends, recent advances in heterogeneous catalysts and expected contribution to knowledge, specifically in nanocatalysts for biofuel production, such as metal oxide catalysts (e.g. ZnO), metal supported by metal oxide catalysts (e.g. Au–ZnO), Alloy (e.g. Cu–Co), Metal oxide supported by metal oxide (e.g. KF–CaO–Fe3O4). The effects of the concentrations of the nanocomposites aforementioned, of time , of temperature and of  pH on 1=butanol producton was InvestIgated.



Prof. Dr. Delia Teresa Sponza is currently working as a professor at Dokuz Eylül University, Department of Environmental Engineering. Scientific study topics are; Environmental engineering microbiology, Environmental engineering ecology, Treatment of fluidized bed and activated sludge systems, Nutrient removal, Activated sludge microbiology, Environmental health, Industrial toxicity and toxicity studies, The effect of heavy metals on microorganisms, Treatment of toxic compounds by anaerobic / aerobic sequential processes, Anaerobic treatment of organic chemicals that cause industrial toxicity and wastewater containing them, Anaerobic treatability of wastewater containing dyes, Treatment of antibiotics with anaerobic and aerobic sequential systems, Anaerobic and aerobic treatment of domestic organic wastes with different industrial treatment sludges, Treatment of polyaromatic compounds with bio-surfactants in anaerobic and aerobic environments, Treatment of petrochemical, Textile and olive processing industry wastewater by sonication, Treatment of olive processing industry wastewater with nanoparticles and the toxicity of nanoparticles. She has many international publications